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Tonal noise, the self-induced discrete frequency noise generated by aerofoils,
is investigated. It is heard from an aerofoil placed in streams at low Mach
number ¯ows when inclined at a small angle to the stream. It is a piercing
whistle, commonly up to 30 dB above the background noise level. Previous
authors have attributed tonal noise to a feedback loop consisting of a coupling
between laminar boundary-layer instability waves and sound waves propagating
in the free stream. Boundary-layer measurements have shown the presence of
tonal noise is closely related to the existence of a region of separated ¯ow close
to the trailing edge of the aerofoil. An analysis of the linear stability of the
boundary-layer ¯ow over the aerofoil is presented. The ampli®cation of the
instability waves is shown to be controlled almost entirely by the region of
separated ¯ow close to the trailing edge. In light of these new experimental and
theoretical results the suitability of the aero-acoustic feedback model is
discussed.

# 1999 Academic Press

1. INTRODUCTION

This paper describes an experimental and theoretical investigation into the
generation of noise of discrete frequency by aerofoils. The noise radiated from
aerofoils is at certain ¯ow conditions dominated by a piercing whistle which is at
a discrete frequency, typically between 20 and 30 dB above the background
broadband level. This phenomenon is thus often called ``tonal noise''.
Tonal noise is commonly heard from gliders, small aircraft, rotors and

fans. Recently tonal noise has been reported to be a prevalent problem with
wind-turbines. The problem of tonal noise from rotors and fans is more
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complicated than for a ®xed aerofoil because each blade in a rotor or fan passes
through the wake of its neighbouring blade during rotation. Therefore, in this
paper tones are investigated from a single, ®xed, isolated aerofoil to simplify the
problem.
The ®rst paper dedicated to the tonal noise generated by isolated aerofoils is

believed to be that of Paterson et al. [1] in 1973. A hot-wire placed in the
aerofoil wake, downstream of the trailing edge of the aerofoil, revealed large
wake ¯uctuations at the same frequency as the acoustic tone. They believed the
tones were caused by vortex shedding at the trailing edge, and that the tones
were louder than other sources of (broadband) sound such as the turbulent
boundary layer. The presence of the tone was associated with a laminar
boundary layer up to the trailing edge on the pressure surface of the aerofoil.
For small variations in the free-stream velocity U1, the frequency of the tones
were approximately proportional to U0�8

1 . At intermittently spaced free-stream
velocities the frequency of the tone was observed to ``jump'' to other curves
proportional to U0�8

1 . The frequency of the tones against the free-stream velocity
had a ``ladder-like'' structure with ``rungs'' of curves proportional to U0�8

1 .
Paterson et al. suggested that the tonal frequency f was dependent on the
free-stream velocity U1 and the boundary-layer thickness d at the trailing edge
of the aerofoil. They assumed that the Strouhal number St=2fd/U1 was
constant, and then predicted the tonal frequency by measuring U1 and d.
(Previous experimental work had shown that St was approximately constant for
a bluff body.) This resulted in the scaling law fAU3=2

1 which qualitatively
described the average behaviour of the dependence of the tonal noise on the
free-stream velocity.
In 1974, Tam [2] suggested that because an aerofoil was streamlined, this was

a poor approximation to a bluff body with which vortex-shedding noise was
commonly associated. He proposed that tonal noise was generated by a
self-excited feedback loop located between the trailing edge of the aerofoil and a
point downstream in the wake. Boundary-layer instabilities propagating into the
wake would grow, causing the wake to vibrate laterally. These vibrations would
emit an acoustic wave at some point close to the trailing edge which coupled
with the instabilities propagating into the wake over the trailing edgeÐthus
completing the loop. Using hydrodynamic stability theory, Tam calculated the
total phase change around the loop. He proposed that for reinforcement to
occur the phase change should be an integral multiple of 2p. The ``ladder-like''
structure observed by Paterson et al. could then be explained by changes in the
total phase around the loop.
The aero-acoustic feedback loop proposed by Tam was modi®ed by Wright in

1976 [3], Longhouse in 1977 [4], Fink in 1978 [5], and Arbey and Bataille in 1983
[6]. It was believed that aerodynamic disturbances (or boundary-layer waves)
induced a ¯uctuating pressure distribution on the aerofoil surface which, on
interacting with the sharp, trailing edge of the aerofoil, generated sound. Sound
waves propagating upstream reinforced the original disturbance, thus completing
the feedback loop. The loop was maintained if the sound had appropriate phase
and magnitude to couple with the boundary-layer waves at the source point,



TONES GENERATED BY FLOW AROUND AEROFOIL 755

taken to be the location on the aerofoil where the boundary-layer waves became
unstable.
Tonal noise also occurs in underwater applications, such as hydrofoils and

propellers. Blake in 1986 [7] (see Chapter 11), and Blake and Gershfeld in 1989
[8], comprehensively reviewed the generation of aerodynamic sound by trailing
edge ¯ows. The occurrence of tonal and broadband noise due to vortex shedding
and aero-acoustic scattering of boundary-layer turbulence was detailed with
respect to the ¯ow conditions and edge geometry. The wake of a blunt edged
aerofoil forms a quasi-periodic vortex street, and the quality (i.e., sharpness) of
the tonal noise depends upon the orderliness of the vortices close to the trailing
edge. Typically, the amplitude of the tones from a blunt edged aerofoil are
greater than with a sharp trailing edge. Classically (e.g., Paterson et al. [1]) the
characteristics of these tones are presumed to be controlled by the wake. The
frequency is predicted by using a Strouhal number mechanism (commonly
associated with bluff bodies) based on the wake thickness of the vortex-street
close to the trailing edge of the aerofoil.
In most of these papers it is assumed that the existence of tonal noise is

dependent on a laminar boundary layer extending up to the trailing edge on the
pressure surface of the aerofoil. Longhouse mentioned the possibility of ¯ow
separation on the aerofoil although this was not pursued any further. However,
the ¯ow separation on a NACA 0012 aerofoil had been reported in 1971 by
Hersh and Hayden [9] when investigating sound radiation from lifting surfaces
(although not speci®cally tonal noise).
Preliminary results from this current investigation in Lowson et al. in 1994

[10], and Nash and Lowson in 1995 [11] reported the occurrence of tonal noise
was largely dependent on the existence of a laminar separation bubble (near the
trailing edge) on the pressure surface of the aerofoil. There were large
¯uctuations around the separation bubble, ¯uctuations at the frequency of
the tonal noise. They concluded that the ¯uctuations were ampli®ed
Tollmien±Schlichting (T±S) waves and the tonal frequencies were controlled by
the region of separated ¯ow.
Dovgal et al. in 1994 [12] reviewed laminar boundary-layer separation and its

associated instability. They de®ned a separation bubble as the region of
recirculating ¯ow between the ¯ow separation and re-attachment points on the
surface of a rigid body. Experimental observations showed that separation
bubbles were usually very small, often less than one boundary-layer thickness
high, and that separated ¯ows became unstable at relatively low Reynolds
numbers. A separation bubble induces boundary-layer transition at or close to
the point of re-attachment, where the transition originates from the strong
growth of initially small-amplitude disturbances in the neighbourhood of the
separation bubble. Dovgal et al. commented that the disturbances surprisingly
appeared linear until their amplitude was about 1% of U1.
In this paper we concentrate on the stability of the boundary layer on the

pressure surface of the aerofoil to enhance understanding of the relationship
between T±S waves and tonal noise. The experimental results presented in the
following section are included to compare with the theoretical results in sections
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3 and 4. The comparisons are discussed in section 5, and we comment on the
implications regarding the aero-acoustic feedback model.
The brief selection of experimental results presented in this paper were

obtained by using a closed-loop, low-turbulence wind-tunnel in the Aerospace
Engineering Laboratory at the University of Bristol. A complete summary of the
experimental results, together with a detailed description of the wind-tunnel test
facility and experimental techniques has been published by Nash et al. [13]. Also,
see the paper by Nash and Lowson [11] for a description of the steps taken to
eliminate the numerous spurious frequencies (e.g., Parker modes) associated with
testing in a closed wind-tunnel.

2. EXPERIMENTAL INVESTIGATION

Experimental results were obtained by using a NACA 0012 and FX79 W151
aerofoil. The aerofoil cross-sectional pro®les are shown in Figure 1. Note the
NACA 0012 and FX79 W151 aerofoils had chord lengths of 300 and 230 mm,
respectively.
The acoustic measurements were taken with a microphone mounted above,

and downstream of, the trailing edge of the aerofoil. The wind-tunnel was driven
for ¯ow velocities between 5 and 70 msÿ1. The discrete tones detected were
typically about 90 dB, i.e., up to 30 dB higher than the background broadband
level.
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Figure 1. NACA 0012 and FX79 W151 aerofoils. The chordwise location of stations 1 to 12
where experimental results were obtained in cases 1 and 4 are denoted by *. (Note that it was
necessary to slightly alter the location of some of the stations in the other cases to positions
where satisfactory experimental measurements were acheived.)
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Until recently the most common method of measuring boundary-layer ¯ows
was with a hot-wire anemometer. In this study a hot-wire was found to have two
signi®cant limitations. Firstly, a hot-wire is unable to detect the direction of the
¯ow, and secondly, the hot-wire is a ¯ow-intrusive measuring device. Nash (cf.
reference [14], Chapter 6) found that the tonal noise mechanism was too
sensitive to be studied by using a hot-wire because the hot-wire adversely
affected the separation bubble. Hence, all the experimental results were obtained
by using a laser doppler anemometer (LDA), which is a non ¯ow-intrusive
measuring device. In addition to measuring the boundary-layer pro®les (see
reference [13] for examples), spectral measurements were also taken by using the
LDA.
In sections 3 and 4 the linear stability of the ¯ow around the aerofoil is

investigated for the cases outlined in Table 1. Note that the angle of the aerofoil
to the oncoming stream is negative to facilitate access (the majority of the
measurements were taken in the pressure surface boundary layer which was then
on the top surface).
Tonal noise is detected over a range of free-stream ¯ow velocities where the

aerofoil is inclined at a small angle to the oncoming stream. For the NACA 0012
aerofoil inclined at ÿ4�, tonal noise is detected for 20 msÿ1<U1< 60 msÿ1.
However, at 0� no tonal noise is detected from the NACA 0012 aerofoil for all
free-stream velocities. The sensitivity of the tonal noise mechanism to changes in
the free-stream velocity and the angle of inclination is discussed in section 4, by
using the results from cases 5 and 6.
Figure 2 shows the acoustic frequency spectra for the tonal cases 1±4. In each

case the discrete tones are clearly visible above the background broadband level.
(The loud, low frequency, broadband noise visible in each spectrum is due to
extraneous tunnel noise.) The experimental results for cases 1±4 all exhibit the
same features. There is a region of reversed ¯ow close to the trailing edge of the
aerofoil in each case. Typically the ¯ow is attached and laminar until
approximately 20 mm upstream of the trailing edge.
Figures 3±5 show frequency spectra taken in the centre of the boundary layer

for cases 4, 5 and 6, respectively. For these cases, two frequency spectra are
shown, one taken close to the trailing edge of the aerofoil and one further
upstream. In Figure 3 there is a fundamental mode at 1192 Hz, the frequency of
the tone, up to 30 dB above the background broadband level. The amplitude of

TABLE 1

Details of cases of tonal noise investigated

Case Aerofoil Angle (degrees) U1 (msÿ1) Tone (Hz)

1 NACA 0012 ÿ4 30 1048
2 NACA 0012 ÿ4 38 1280
3 NACA 0012 ÿ4 44 1420
4 FX79 W151 ÿ3 30 1192
5 NACA 0012 ÿ3 8 No tone
6 NACA 0012 0 17 No tone
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the fundamental mode increases rapidly approaching the trailing edge of the
aerofoil. In this case there are no harmonics visible above the background level.
(However in cases 1, 2 and 3 there are weak harmonics visible above the
background level.) In Figure 4 the spectra display only broadband frequency
over the entire aerofoil. Therefore, in case 5 there is no selective ampli®cation of
a single T±S wave with ®xed frequency. In Figure 5 a fundamental mode is
observed upstream of the trailing edge, but this mode is no longer visible at the
trailing edge. The generation of tonal noise is dependent on an ampli®ed T±S
wave of discrete frequency propagating up to the trailing edge of the aerofoil. In
case 6, LDA boundary-layer pro®les show that transition from a laminar to a
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Figure 2. Acoustic frequency spectra for cases 1, 2, 3 and 4.
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turbulent ¯ow occurs shortly upstream of the trailing edge, thus eliminating the

T±S wave and the tonal noise.

In summary, the experimental results reveal the existence of an ampli®ed

boundary-layer instability wave (loosely referred to as a T±S wave) at the same

frequency as the tone. The majority of the growth of the wave appears to occur

close to the trailing edge of the aerofoil where the ¯ow has separated and there

exists a small region of reversed ¯ow. The rapid growth of the discrete mode

(over all other frequencies) is observed to start just before the ¯ow separates.

Previous papers have described a feedback loop between T±S and acoustic waves

starting at a point where the ¯ow ®rst becomes unstable. In section 4 the ¯ow is

shown to become unstable at approximately 40% chord, but no discrete

frequencies are detectable in the boundary layer until close to the trailing edge.

The majority of the ampli®cation of the T±S waves occurs close to the trailing

edge of the aerofoil and this appears to be inconsistent with the aero-acoustic

feedback model discussed in section 1.

All the frequency spectra shown have been taken inside the boundary layer. In

addition, the frequency spectrum of the streamwise component of the ¯ow was

analyzed up to 100 mm above and below the aerofoil. Figure 6 (for case 1) is a

contour plot of the amplitude of the discrete peak in the spectrum, at the
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Figure 3. Frequency spectra taken at (a) 15 mm and (b) 0�5 mm upstream of the trailing edge
of the aerofoil, for case 4.
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frequency of the tone. (Note that the labels on each contour are the amplitude
(in dB) above the background broadband level.)
Peak frequencies are detectable up to 150 mm upstream of the trailing edge

(50% chord) on either side of the aerofoil. The approximately radial form of the
contour lines (excluding the wake) is a characteristic of a ®eld scattered by a
sharp edge. On the suction surface (the top surface in Figure 6) the peak
frequencies were undetectable within 5 mm of the surface because the boundary

layer was turbulent. Hence, the wave-like pattern on the suction surface in
Figure 6 has no physical signi®cance, (and it is caused by the interpolation
routine used to generate the contour lines).
In reference [13] ¯ow visualization pictures of the wake of the aerofoil show

the formation of a vortex street by the trailing edge, with vortices being shed
alternately from the pressure and suction surfaces of the aerofoil. From Figure 6
and the ¯ow visualization pictures one observes that the structure of the wake is
remarkably organized, and the shedding frequency is controlled by the T±S
waves on the pressure surface of the aerofoil. It is presumed that the quasi-

periodic structure of the vortex street coupled with the boundary-layer structure
on the pressure surface of the aerofoil accounts for the sharpness (narrow band)
of the acoustic tone.
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Figure 4. Frequency spectra taken at (a) 35 mm and (b) 0�5 mm upstream of the trailing edge
of the aerofoil, for case 5.
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Finally, note that the natural resonance frequencies of the aerofoil did not
coincide with any of the observed tones. Nash (cf. reference [14], section 5.4)
showed that tonal noise was not generated by structural vibrations of the
aerofoil.

3. LINEAR STABILITY ANALYSIS

One of the aims of this study of tonal noise was to compare experimental and
theoretical results. Assume in a ®rst approximation that the boundary-layer
disturbances remain approximately linear over the majority of the aerofoil
chord. Then consider the stability of the ¯ow by considering normal modes,
assuming a disturbance may be expressed by a superposition of these modes.
From analyzing the experimental results, the boundary-layer disturbances

appear suitable to be modelled by spatial modes of ®xed frequency with slowly
changing wavelengths to account for the development of the boundary layer.
Following Bouthier [15] and Gaster and Grant [16], the development of a mode
with ®xed frequency in a laminar boundary layer was modelled simply by taking
a stream function of the form

c�x, z� � f�z� expfi�� a�x� dxÿ ot�g; �1�
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Figure 5. Frequency spectra taken at (a) 50 mm and (b) 0�5 mm upstream of the trailing edge
of the aerofoil, for case 6.
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where a= ar+iai is the complex wavenumber, w the real frequency and (x, z)
are Cartesian co-ordinates positioned such that the boundary is at z=0. The
ampli®cation of a wave with ®xed frequency and a slowly varying complex
wavenumber a between x=x0 and x1 (where x1 is downstream of x0) will be

A�x1�
A�x0� � exp ÿ

�x1
x0

ai�x� dx
� �

, �2�

where A(x) is the amplitude of the mode. By using equation (2), calculate the
ampli®cation of T±S waves in the pressure surface boundary layer of the
aerofoil, over a range of frequencies, in order to compare the results of the linear
stability analysis with the experimental data.
The wavenumber a is calculated by solving the Orr±Sommerfeld problem

fiv ÿ 2a2f
0 0 � a4f � iRf�aUÿ o��f 0 0 ÿ a2f� ÿ aU

0 0
fg; �3�

f � f 0 � 0 at z � 0; �4�

f
0 0 � �a� g�f 0 � agf � 0

f
0 0 0 � �a� gf

0 0 � agf
0 � 0

8<:
9=; as z!1 , �5�
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Figure 6. Contour plot of the amplitude of the streamwise peak frequency, for case 1. (Note in
this ®gure the suction surface is the top surface.)
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where a prime denotes differentiation with respect to z, R is the Reynolds
number and g=

�������������������������������
a2 � iR�aÿ o�p

:
The Orr±Sommerfeld problem de®ned by equations (3)±(5) describes the

development of in®nitesimal disturbances in a boundary-layer ¯ow with velocity
pro®le U(z). The Orr±Sommerfeld equation (3) may be solved for ®xed (R, o)
to determine the wavenumber a of the least stable mode at any point in the
(R, o)-plane. The Orr±Sommerfeld equation is a stiff, differential eigenvalue
problem which was solved by following the method of compound matrices
described by Ng and Reid [17].
In each case (cf. Table 1) the wavenumber a was calculated at 12 stations,

indicated on Figure 1 by circles (*), and an expression ai(x) was derived by
®tting a least-squares polynominal through the data points. The ampli®cation
between stations 1 and 12 on the aerofoil was then given by equation (2). Station
1 was taken close to the maximum thickness point of the aerofoil (approximately
30% chord), and station 12 as close as possible to the trailing edge of the
aerofoil.
Falkner±Skan boundary-layer pro®les appear suitable to model the ¯ow over

an aerofoil because, by varying the Falkner±Skan parameter b, pro®les over a
range of pressure gradients may be considered. The Falkner±Skan boundary-
layer is derived by considering a similarity solution of the boundary-layer
equations with a free-stream velocity U1Axb/2ÿb. The problem is reduced to

f
0 0 0 � ff

0 0 � b�1ÿ f
02� � 0, �6�

f�0� � f
0 �0� � 0; f

0 �1� � 1, �7�
where a prime denotes differentiation with respect to the similarity variable
z= z/g(x), and the boundary-layer velocity pro®le is given by U=U1 f 0. The
function g(x)A

���������������
�x=U1

p
is a stretching function to allow for the gradual

thickening of the boundary layer with distance downstream (where � is the
kinematic viscosity).
On varying the parameter b the solution of equations (6) and (7) will give the

boundary layer for the ¯ow over a rigid plate inclined at an angle of pb/2. For
b> 0 there will be a favourable pressure gradient and for b< 0 an adverse
pressure gradient. For b=ÿ0�1988 the shear stress at the boundary surface is
zero and the Falkner±Skan pro®le is on the verge of separation. For
ÿ0�1988< b< 0 the pro®les of one family of solutions of the Falkner±Skan
problem all exhibit a small region of reversed ¯ow close to the boundary
surfaceÐthere is boundary-layer separation.
The shape of the boundary-layer pro®le over the aerofoil slowly changes

because of the aerofoil curvature. At each station the velocity pro®le U is
approximated by a Falkner±Skan pro®le, by matching the shape factor H. Both
the displacement thickness d� and momentum thickness y may be measured
experimentally by using the LDA. For the Falkner±Skan boundary layer,

d��x� � ��x=U1�1=2�2ÿ b�1=2
�1
0

�1ÿ f 0� dz, �8�
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y�x� � ��x=U1�1=2�2ÿ b�1=2
�1
0

f 0�1ÿ f 0� dz, �9�

where x, the distance from the leading edge of the rigid plate in the Falkner±
Skan formulation, has no relation to the location of the station on the aerofoil.
The shape factor H= d�/y is independent of x, and for each Falkner±Skan
boundary-layer pro®le there exists a unique shape factor which may be
calculated. At each station d� and y were measured by using the LDA to
calculate the shape factor H, and then the ¯ow at that station was modelled by a
Falkner±Skan boundary layer with the same shape factor.
At each station the characteristic length scale is assumed to be d�.

Therefore, the Reynolds number R=U1d�/� and non-dimensional frequency
o=2pfd�/U1 are introduced, which are used when solving the Orr±Sommerfeld
problem in this stability analysis.
An alternative method considered was to compare the pressure gradients at

each station on the aerofoil. However, pressure measurements were not available
from the wind-tunnel experiments in this study. A prediction code (kindly
supplied by Dr J. Gaydon, Department of Aerospace Engineering, University of
Bristol) was used to predict the pressure gradient. The code was only able to
predict the pressure gradient where the ¯ow was attached. The relative error
between the predicted and the Falkner±Skan pressure gradient at each station
was approximately 20±30%. Conclusions from the comparison between the
predicted and theoretical pressure gradients are dif®cult because the pressure
gradients could not be measured. Therefore the accuracy of the predicted
pressure gradients is unknown. However, on matching the shape factor of the
theory to the measured shape factor of the experiment, the pressure gradient
predicted theoretically seems to be consistent with the experiment.
Several assumptions are made in this model. Firstly, in the Orr±Sommerfeld

problem one assumes a parallel, bounded, basic ¯ow U(z). The theory is
commonly utilized to investigate the development of quasi-parallel, semi-in®nite
¯ows such as a boundary layer. The quasi-parallel ¯ow approximation assumes
that over a ®nite length scale the basic ¯ow is unchanged. Calculations for the
cases in Table 1 indicate that the growth of the displacement thickness d� over
one T±S wavelength lTS is less than 10% up to approximately 40 mm upstream
of the trailing edge of the aerofoil. This is slightly upstream of the region of
separated ¯ow on the aerofoil. After ¯ow separation the pro®les ``change'' more
rapidly and the validity of the calculations close to the trailing edge are
questionable.
Secondly, the classical boundary-layer equations may break down at

separation where the height of the region of reversed ¯ow is comparable with the
boundary-layer thickness. In this paper separation is de®ned as the onset of
reversed ¯ow. It is assumed that the onset of separation is close to the trailing
edge of the aerofoil, and the height of the region of reversed ¯ow remains small
enough to disregard the effect of a possible singularity in the boundary-layer
equations.
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Finally, the ¯ow is assumed to remain stable until at least station 1 on the
aerofoil. Clearly the ¯ow around the leading edge is not quasi-parallel. There
will be a stagnation point at the ``nose'' of the aerofoil and instabilities may
develop there. However, there exist strong favourable pressure gradients around
the nose of the aerofoil which accelerate the ¯ow and plausibly dampen any
instabilities associated with the stagnation point. Therefore, the ¯ow is assumed
to be stable at the start of the region of quasi-parallel ¯ow.

4. RESULTS

Results are presented for the six cases shown in Table 1. Figure 7 shows plots
of the marginal stability curves (ai=0) at stations 1 to 12 for case 4. The
marginal curve for each station is labelled. The circles (*) denote the location in
the (R, o)-plane of a T±S wave, at the frequency of the tone, at the 12 stations
along the aerofoil.
Figure 8 shows plots of the growth rate ÿai against frequency f at stations 1

to 12 for case 4. The growth rate curve for each station is labelled. The solid
vertical line is the frequency of the tone. The two vertical dashed lines are the
frequencies with maximum growth rate at stations 8 and 9Ðthe relevance of
these lines is discussed in section 4.1.
The marginal stability and growth rate curves for tonal cases 1, 2 and 3 are

similar to Figures 7 and 8 (and hence are not presented in this paper).
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Figures 9±14 show plots of the ampli®cation (2) of T±S waves with ®xed
frequency over the aerofoil for cases 1±6. Once again the solid vertical line is the
frequency of the tone.

4.1. TONAL CASES: 1, 2, 3 AND 4

Figures 7 and 8 clearly show the change in the stability characteristics of the
velocity pro®les with streamwise location over the aerofoil. There are several
points to note. In Figure 7, downstream of station 2 the frequency of the tone,
1192 Hz, translates to an unstable boundary-layer frequency. In this case,
1192 Hz is a stable frequency at station 1. The assumption that instabilities
associated with the leading edge do not interfere with the development of
instabilities between station 1 and the trailing edge appears reasonable.
The structure of the marginal curves changes between stations 8 and 9. From

stations 1±8 there is a narrow band of unstable frequencies between the lower
and upper branches of the marginal curves. The upper and lower branches
appear to converge as R!1. From stations 9±12 there is a broad band of
unstable frequencies between the lower and upper branches of the marginal
curves. Now the branches of the marginal curves do not appear to converge as
R!1. On several of the curves (notably at station 9) there is a ``kink'' located
on the upper branch, close to the ``nose'' of the marginal curve. The relevance of
these observations are discussed soon.
In Figure 8, the growth rates associated with stations 1±8 are considerably less

than the corresponding growth rates at stations 9±12. From stations 1±8 the
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Figure 10. Ampli®cation of T±S waves with ®xed frequency 1280 Hz for case 2.
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Figure 11. Ampli®cation of T±S waves for case 3.
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Figure 12. Ampli®cation of T±S waves for case 4.
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frequency of the mode with the maximum growth rate decreases at successive
stations. The frequency of the mode with maximum growth rate at station 8
(denoted by a vertical dashed line) is less than 1192 Hz, the frequency of the
tone. The frequency of the mode with the maximum growth rate at station 9
(also denoted by a vertical dashed line) is greater than 1192 Hz. Thus, the
frequency of the tone is bound by the frequency of the modes with maximum
growth rate at stations 8 and 9. Between stations 8 and 9 there is a dramatic
change in the stability characteristics with large ampli®cation of T±S waves
predicted downstream of station 9.
Figure 12 shows remarkable agreement between the linear stability analysis

and the experimental results. A mode with frequency about 1100 Hz is ampli®ed
over and above all other frequencies. The prediction error is less than 10%.
Figures 9±11 show similar ampli®cation curves for the tonal cases involving the
NACA 0012 aerofoil. The prediction error is negligible in case 1, and
approximately 13 and 23% in cases 2 and 3, respectively.
The prediction error in all the cases increases with the free-stream velocity U1.

Typically the growth rates of the modes increase with R (and therefore with
increasing U1). Thus, the inherent assumption that the disturbances remain
linear between stations 1 and 12 is more questionable as the free-stream velocity
increases.
The ampli®cation factor in case 4 is only about 2000 compared with up to

200 000 on the NACA 0012 aerofoil. However, the growth rates appear to be of
similar magnitude. The difference in the ampli®cation appears to be due to the
different shape and chord length of the aerofoils. The ampli®cation (2) was
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Figure 13. Ampli®cation of T±S waves with ®xed frequency (no tone) for case 5.
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calculated by integrating the growth rate over 210 mm for the NACA 0012
aerofoil compared with 160 mm for the FX79 W151; thus, in general the
ampli®cation factors between different aerofoils are not comparable.
However, the description of the development of the ¯ow remains the same for

both aerofoils (and it is assumed that it is applicable to many aerofoil pro®les
where the ¯ow remains quasi-parallel up to the trailing edge). It is proposed that
the development of the boundary-layer disturbances is controlled by two
different mechanisms of instability. The nature of the dominant mechanism of
instability, governing the development of the ¯ow, changes close to the point of
¯ow separation. (In case 4 the change in the mechanism of instability is observed
between stations 8 and 9.)
The viscous mechanism of instability proposed by Tollmien and Schlichting is

well known. Viscous forces modify the phases of the velocity perturbations
which lead to positive Reynolds stresses, enabling the transfer of energy from the
mean-¯ow to the disturbance. The transfer of energy is determined by the
product of the Reynolds stress and the mean-velocity gradient. These
disturbances are known as Tollmien±Schlichting (T±S) waves. At large R there
are two regions in the boundary layer where viscous effects are signi®cant,
namely the viscous wall layer and critical layer. The viscous wall layer is
located by z=0, whereas the critical layer is centred about z= zc, where
U(zc)=<{w/a}.
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Figure 14. Ampli®cation of T±S waves with ®xed frequency (no tone) for case 6.
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The stability characteristics of the ¯ow of an inviscid ¯uid depend largely on
the location of any in¯exion points (U 0 0=0). As R!1 the stability of the ¯ow
is governed by inviscid dynamics described by the Rayleigh equation

�aUÿ o��f 0 0 ÿ a2f� ÿ aU
0 0
f � 0: �10�

On using equation (10), Rayleigh's in¯exion-point theorem states that a
necessary condition for instability of an inviscid, bounded ¯ow is the existence of
an in¯exion point, away from the boundary walls. Further, for unbounded shear
¯ows an in¯exion point in the pro®le is a necessary and suf®cient condition for
instability. Upon using this extension of Rayleigh's theorem, Falkner±Skan
boundary-layer pro®les with an in¯exion point suf®ciently away from the
boundary will be unstable as R!1 (this is observed in Figure 7 for the
marginal curves downstream of station 9). The in¯exion point must be located
suf®ciently away from the boundary so that the pro®le may locally be
approximated by an unbounded shear layer.
Healey [18] investigated the dominant instability mechanism for boundary-

layer ¯ows under the in¯uence of a small adverse pressure gradient (i.e., for
Falkner±Skan pro®les with b small and negative). He showed there exists a
``kink'' on the upper branch of the marginal stability curve for the Blasius
boundary layer (b=0) at R1 105. For large R on the lower branch, and up to
the ``kink'' on the upper branch, the boundary layer had a triple-deck structure.
After the ``kink'' on the upper branch the boundary layer had a quintuple-deck
structure. In a triple-deck boundary layer the critical point zc lies inside the
viscous wall layer, but in a quintuple-deck the critical layer and viscous wall
layer are separate. (Note that from the Rayleigh equation (10), the critical point
zc and the in¯exion point will coincide where R=1.)
Healey plotted constant growth rate contours for Falkner±Skan pro®les with a

small adverse pressure gradient. After the ``kink'' in the marginal curve the
contours below the upper branch were nearly horizontal, corresponding to
inviscid waves because they were independent of R. For large R the in¯exion
point is located close to zc, and therefore after the ``kink'' in the marginal curve
the in¯exion point will be outside the viscous wall layer, enabling instabilities to
be dominated by inviscid dynamics. With stronger adverse pressure gradients the
``kink'' on the upper branch of the marginal curve moves to lower R. An
increasingly large region between the upper and lower branches of the marginal
curve will be dominated by inviscid instabilities. Also, the growth rates
associated with the inviscid instabilities may typically be an order of magnitude
larger than the corresponding growth rates for viscous instabilities.
Following the results by Healey, it is proposed that there is a change in the

dominant mechanism of instability from viscous to inviscid dynamics. In Figures
7 and 8 this change is readily observed to occur between stations 8 and 9.
Initially the perturbation energy is generated by the Reynolds stresses in the
viscous wall layer. Further downstream, the in¯exion point is located suf®ciently
outside the viscous wall layer such that the growth of the perturbation will now
be governed by the inviscid dynamics of the in¯exion-point pro®le. To remove
the in¯exion point suf®ciently from the viscous wall layer, ¯ow separation is
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required. The in¯exion point will lie above the region of reversed ¯ow, and hence
the large ampli®cation which is required to initiate the tonal noise is dependent
on the ¯ow separating near the trailing edge of the aerofoil.
In Figure 8 the vertical dashed lines show the frequencies of the modes with

maximum growth rate near the end of the viscous region and at the beginning of
the inviscid region. We propose that the frequency of the mode with maximum
ampli®cation is selected between stations 8 and 9 (in this case). The majority of
the ampli®cation occurs in the inviscid region; however, if the frequency is
selected near the beginning of this region then a linear analysis appears suitable
to use as a ®rst approximation when predicting the tonal frequency.
Tonal noise is dependent on the free-stream velocity U1 and the angle

between the aerofoil and the oncoming stream. In these experiments, tonal noise
was detected for 20 msÿ1<U1< 60 msÿ1, and when the aerofoil was placed at
an angle between 2� and 5� to the oncoming stream (NACA 0012 aerofoil).
Examples are now discussed where U1< 20 msÿ1 (case 5, section 4.2),
U1> 60 msÿ1 (section 4.3) and the angle of attack is 0� (case 6, section 4.4), to
enhance understanding of the tonal noise mechanism.

4.2. NO-TONE CASE 5

Figure 4 shows the frequency spectra taken in the centre of the boundary layer
at (a) 35 mm and (b) 0�5 mm upstream of the trailing edge of the aerofoil, for
case 5 where U1=8 msÿ1. They both show frequency in a broad band with no
discrete peaks anywhere in the boundary layer. In this case there is no selective
large ampli®cation of a mode of discrete frequency, and without this
ampli®cation, there is no tonal noise.
However, for case 5 the LDA boundary-layer pro®les clearly show a large

region of reversed ¯ow near the trailing edge of the aerofoil. In section 4.1 it was
proposed that the large ampli®cation of the boundary-layer waves depends on
the ¯ow's separating near the trailing edge±this case appears to contradict this
assumption.
From Figure 13 it may be predicted that a mode with frequency about 180 Hz

should be detected in the boundary layer. However, on comparing with tonal
cases 1, 2 and 3 the ampli®cation is relatively weak, and is only over a narrow
band of frequencies. It is assumed that the ampli®cation is not suf®cient to
initiate the resonance mechanism generating tonal noise.
The weaker ampli®cation is attributed to the reduction in the growth rates

over the aerofoil. At the trailing edge the Reynolds number R1 2500 compared
with R1 3000 in the tonal cases 1, 2 and 3. At lower R the growth rate ÿai is
less, and thus the total ampli®cation will dramatically decrease. With increasing
R (and therefore free-stream velocity U1) the ampli®cation will increase until
reaching some critical level where the amplitude of the perturbations is suf®cient
to initiate tonal noise.

4.3. NO-TONE CASE FOR HIGH U1

For U1> 60 msÿ1 the LDA boundary-layer pro®les clearly show that the ¯ow
on the pressure surface of the aerofoil is turbulent at the trailing edge. The tonal
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noise mechanism is dependent on the existence of a large amplitude boundary-
layer instability wave, at the same frequency, propagating up to the trailing edge
of the aerofoil. A fully developed turbulent boundary layer would destroy any
discrete frequency structure generated upstream of the transition point. For high
free-stream velocities a linear stability analysis of the ¯ow over the aerofoil is not
possible because the assumption of linearity over the majority of the chord is no
longer valid.
Transition from a laminar to turbulent ¯ow is a gradual process as the free-

stream velocity increases. The onset of turbulence has to be far enough upstream
of the trailing edge to have a suf®cient distance to destroy the boundary-layer
waves. The experiments indicate that the region of reversed ¯ow is compressed
as the free-stream velocity increases. At high enough free-stream velocities the
region of reversed ¯ow will be very thin and the boundary layer will re-attach
before the trailing edge. The ¯ow propagating over the region of reversed ¯ow
will be very unstable and transition to a turbulent boundary layer will occur on
or shortly after re-attachment.
At high free-stream velocities (U11 60 msÿ1) when tonal noise was still

detected, the LDA boundary-layer pro®les close to the trailing edge of the
aerofoil do not show any reversed ¯ow. However, large amplitude disturbances
are still detected, at the frequency of the tone. From section 4.1 it is proposed
that at high free-stream velocities ¯ow separation is not necessary to enable
disturbances to be controlled by the in¯exion point in the boundary-layer pro®le.
An improved description of the mechanism generating tonal noise would be that,
the large ampli®cation of boundary-layer waves is dependent on the disturbances
being controlled by the inviscid dynamics of in¯exional pro®les upstream of the
trailing edge of the aerofoil. However, over the majority of free-stream velocities
when tonal noise is detected, ¯ow separation (and therefore a small region of
reversed ¯ow) is necessary to enable the ¯ow to be dominated by the inviscid
dynamics of an in¯exional pro®le.
It is proposed that tonal noise will not be detected when the transition to

turbulence occurs suf®ciently far upstream of the trailing edge of the aerofoil.
The transition point depends upon the free-stream velocity and the angle
between the aerofoil and the oncoming stream (see section 4.4).

4.4. NO-TONE CASE 6

When the NACA 0012 aerofoil was placed parallel to the oncoming stream
there was no tonal noise detected for all free-stream velocities. For case 6 the
LDA boundary-layer pro®les show there is ¯ow separation 60 mm upstream of
the trailing edge of the aerofoil, and that transition from a laminar to turbulent
boundary layer occurs far upstream of the trailing edge. (For case 6 the ¯ow re-
attaches 35 mm upstream of the trailing edge.)
Figure 5 shows that 50 mm upstream of the trailing edge a mode with

frequency 542 Hz was detected in the boundary layer, approximately 30 dB
above the background broadband level. By the trailing edge this was destroyed
by the onset of turbulence and the frequency spectrum was entirely broadband.
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In Figure 14, the ampli®cation is calculated up to a station located 35 mm
upstream of the trailing edge of the aerofoil, where the ¯ow is still approximately
laminar. In case 6, the large ampli®cation of the boundary-layer instabilities
occurs further upstream than in cases 1±4. In this case it is predicted that if the
transition were prevented then a tone of 542 Hz would be detected. (The
frequency prediction error is low because U1 was only 17 msÿ1.)
In this case the free-stream velocity is relatively low (i.e., compared with those

discussed in section 4.3) and the mechanism controlling the onset of turbulence
is different. For high free-stream velocities the onset of turbulence may be
viewed as primarily a Reynolds number effect. In case 6 the free-stream velocity
U1 (and hence R) is much lower and the onset of turbulence is now controlled
by the pressure gradients close to the trailing edge of the aerofoil.
The pressure gradients around the aerofoil are related (locally) to the

curvature of the pro®le. There are strong favourable pressure gradients around
the blunt leading edge of the aerofoil where the curvature is high. The angle
between the aerofoil and the oncoming stream alters the local curvature of the
aerofoil surface with respect to the ¯ow. The region of interest is approximately
the ®nal 25% of the chord, because tonal noise is dependent on the region of
separated ¯ow being located close to the trailing edge of the aerofoil.
When the angle between the aerofoil and the oncoming stream is greater than

about 5� there will be no adverse pressure gradient on the pressure surface of the
aerofoil. Therefore, ampli®cation of the boundary-layer instability waves will be
predominantly a viscous mechanism and the ampli®cation will not be suf®cient
to initiate tonal noise. When the angle is very small (i.e., less than about 2�) the
local curvature close to the trailing edge is greater than when the aerofoil is
inclined at an angle between about 2� and 5� to the oncoming stream. With a
very small angle the adverse pressure gradient close to the trailing edge is
increased, and ¯ow separation is located further upstream of the trailing edge
than when the angle of the aerofoil to the oncoming stream is between about 2�

and 5�.
Positioning the aerofoil at an angle between about 2� and 5� locates the ¯ow

separation close enough to the trailing edge to ensure that the ¯ow remains
approximately laminar up to the trailing edge. (We say ``approximately laminar''
because the ¯ow may be transitional at, or slightly before, the trailing edge, but
the turbulence is not fully developed, and this ensures that the frequency
spectrum still contains the discrete peak.)

5. DISCUSSION

The aero-acoustic feedback models proposed by Tam [2], Wright [3],
Longhouse [4], Fink [5] and Arbey and Bataille [6] may all be simpli®ed by
breaking down each model into the following three components: (1) formation
of T±S waves in the pressure surface boundary layer; (2) generation of sound
through the diffraction of the T±S waves at the trailing edge of the aerofoil; (3)
feedback (i.e., transmission of the sound upstream and generation of more T±S
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waves). Tonal noise will occur only when all three components are present. To
suppress the tonal noise, at least one of the components must be removed from
the system.
The generation of sound by diffraction at a sharp edge has been investigated

by numerous authors (e.g., Ffowcs-Williams and Hall [19] investigated the

sound ®eld radiated by a distribution of turbulent eddies close to the edge of a
half-plane). Aizin [20] investigated the generation of sound by a T±S wave
passing over a sharp edge. He considered the diffraction of a T±S wave at the
end of a ¯at plate in a uniform ¯ow, by using the Wiener±Hopf technique. The
problem for low Mach number ¯ows was solved in two stages; ®rstly by solving
the problem of a T±S wave incident on the edge in the near ®eld, assuming
incompressibility, and then by matching with the solution of the wave equation

in the far ®eld. Aizin derived an analytical expression for the acoustic potential
in the far ®eld (i.e., for radial distance r4 1 where the sharp edge is located at
r=0). The sound ®eld had the same frequency as the T±S wave in the boundary
layer and was directly proportional to the pressure exerted by the T±S wave at
the sharp edge. The sound ®eld contours had a characteristic cardioid shape with
the cusp at r=0.

An aerofoil is a slender body, and on assuming it is suf®ciently long (i.e.,
chord length4 lTS), the aerofoil may be replaced by a ¯at plate. Thus, in
principle the analysis by Aizin may be used to solve part (2) in the aero-acoustic
feedback model outlined previously. However, this analysis precludes parts (1)
and (3) in the model.
The development of boundary-layer instability waves over the aerofoil has

been discussed in section 4. The selection of a single mode, and its subsequent
large ampli®cation appears to be determined by the dynamics close to the point
of ¯ow separation. The frequency ``selected'' for ampli®cation will remain the
most ampli®ed frequency up to the trailing edge of the aerofoil. In other words,
from an initial set of unstable discrete frequencies, one frequency will eventually
dominate. Linear theory predicts the frequency of the mode reasonably well

because the frequency is ``selected'' in a region where the theory is valid. Where
the frequency is ``selected'' the nature of the dominant mechanism of instability
is changing.
The large ampli®cation of the boundary-layer waves leads to the formation of

a vortex street in the wake of the aerofoil. Normally the frequency of the
disturbances in the wake is not related to the frequency of the boundary-layer
disturbances because the wake and the boundary layer are effectively decoupled.

The development of in®nitesimal disturbances in the boundary layer is described
by the viscous Orr±Sommerfeld problem (3) whereas for the wake the inviscid
Rayleigh problem (10) is used. However, at each resonance frequency the wake
instabilities are controlled by the pressure surface boundary layer. It is
reasonable to assume that the frequencies in the suction surface boundary layer
are in a broad band. The frequency of the vortex street is determined by the

ampli®cation of a ``selected'' boundary-layer instability wave. Tonal noise is
heard when the whole system is ``singing'' at one frequency.
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In principle this is in agreement with Paterson et al. [1], who attributed the
tonal noise to vortex shedding. However, it is concluded that the tonal noise
mechanism is not the same as the constant Strouhal number problem for bluff
bodies used by Paterson et al. The Strouhal number was not a constant in our
investigation. The frequency of the boundary-layer instability waves and the
vortex wake appears to be determined by the stability characteristics of
the boundary-layer pro®le at stations located over approximately two-thirds of
the aerofoil, not just the pro®le at the trailing edge.
The transformation of free-stream oscillations into small-amplitude

disturbances in the boundary layer, namely boundary-layer receptivity, is
commonly separated into two categories: natural and forced receptivity [21].
Natural receptivity occurs where the wavelengths of the boundary layer and
external disturbances are not comparable. The most common example of this is
sound. A wavelength conversion process is required because the external
disturbances will not contain much energy at the wavelengths of the boundary-
layer instabilities. Forced receptivity occurs where the wavelengths of the
boundary layer and external disturbances are comparable. There will then be a
direct coupling, i.e., a direct transfer of energy. An example of this would be a
localized unsteady pressure ®eld outside of the boundary layer.
Forced receptivity occurs more easily than natural receptivity. Natural

receptivity occurs predominantly in two regions: at the leading edge and where
the boundary layer changes rapidly. Natural receptivity does not occur in a
parallel ¯ow region where the Orr±Sommerfeld problem is valid. Hence, natural
receptivity is usually associated with non parallel mean-¯ows. Dovgal et al. [12]
commented that velocity pro®les within a separation bubble are more receptive
than ¯ows similar to the Blasius boundary layer.
For case 1, note that the acoustic wavelength lac1 320 mm compared with

lTS 1 11 mm. The aero-acoustic feedback loop model proposed a coupling
between sound waves propagating upstream from the trailing edge, and T±S
waves propagating downstream in the boundary layer. It, was proposed that the
coupling began where the ¯ow became unstable, that is where R1Rc (where Rc

is the critical Reynolds number), which in case 4 is close to station 2 (see Figures
1 and 7). However, the ampli®cation of the boundary-layer instability waves is
predominantly in the region of separated ¯ow. This region is small compared
with the aerofoil chord. The ``critical point'' on the aerofoil would appear to be
close to the point of ¯ow separation, not where R1Rc, i.e., not where the ¯ow
initially becomes unstable.
It is proposed that boundary-layer receptivity will be weak where R1Rc.

There are no discrete peaks in the frequency spectra in the boundary layer
between Rc and the separation bubble. There may be several T±S waves with
different frequencies propagating downstream, but their amplitudes will be
relatively small. Any coupling between sound and T±S waves where R1Rc

would appear to have negligible effect on the subsequent large ampli®cation
close to the trailing edge of the aerofoil. The results in this paper suggest, in
particular Figure 6, that forced boundary-layer receptivity in the region
containing the separation bubble is a more suitable feedback model.
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Paterson et al. [1] observed a ``ladder-like'' frequency response. This has been
attributed to phase changes around the aero-acoustic feedback loop. A ``ladder-
like'' frequency structure was not readily observable in our experimental results,
but tonal noise was still detected. The tones may simply be explained in terms of
the ampli®cation of boundary-layer instabilities and we believe that a feedback

loop is not a necessary condition for the generation of tonal noise (although as
discussed above, it is proposed that there will be some feedback about the
separation bubble). However, the coupling between the boundary-layer and
the wake instabilities together with an upstream feedback mechanism about the
separation bubble provides a mechanism which results in the narrow band
spectral characteristics of the acoustic tone.
The tonal noise mechanism proposed herein combines well-known concepts of

trailing edge noise (see many of the references in this paper). Each aerofoil had
a sharp trailing edge, but the location of a separation bubble close to the
trailing edge facilitated the generation of vortices shed into the wake forming a
quasi-periodic vortex street, perhaps more closely resembling the wake of an
aerofoil with a blunt trailing edge.
Further insight may be gained by investigating the regions of absolute and

convective instability. Bers [22] proposed that these regions may be identi®ed by
examining the dispersion relation between the wavenumber and frequency.
Reversed ¯ow may be associated with absolute instability because there is a
mechanism for upstream effects. Koch [23] considered the wake behind
a cylinder and found there was a small region of absolute instability close to
the body. He proposed a frequency prediction method to estimate the

vortex-shedding frequency. A spatio-temporal stability analysis may provide
further insight into the frequency selection criterion, and the location (relative to
the trailing edge) of the dominant source of the tonal noise.
Finally, in the Orr±Sommerfeld theory one assumes that the local ¯ow extends

unchanged on an in®nite domain, that is ÿ1< x<1. For R>Rc there is a
continuous band of unstable frequencies which are ampli®ed. However, the ¯ow

is bounded by the constraints of the wind-tunnel and the chord length of the
aerofoil. An alternative approach to the problem would be to discard the above
local approximation and apply bifurcation theory to the ¯ow as a whole.
By Serrin's theorem, for a small enough R there will exist a unique, stable,

steady ¯ow around the aerofoil. With increasing R, the steady ¯ow will remain
stable until R=Rc. Then a Hopf bifurcation will occur and the ¯ow will
bifurcate from a steady, stable ¯ow to a periodic, stable ¯ow. This is known as a

super-critical bifurcation. It is a description of the onset of instability with the
feedback, yet a description which tells us nothing about the mechanisms of
instability. With further increases of R there may be more bifurcations resulting
in quasi-periodic ¯ow and eventually chaos and turbulence.
The linear results suggest that the Orr±Sommerfeld theory may be used to

obtain an approximation to f, the frequency observed in the ¯ow after the Hopf

bifurcation. It is proposed that the ¯ow will bifurcate to a frequency close to the
frequency of the mode with maximum linear ampli®cation over the aerofoil.
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6. CONCLUSIONS

From the results in this paper, tonal noise is largely dependent on the
existence of a separation bubble close to the trailing edge of the aerofoil. The
aero-acoustic feedback models proposed by several previous authors have been
discussed, and it is proposed that feedback is more likely to occur about the
separation bubble.
The distinctive ``piercing whistle'' or ``singing'' tones radiated by the aerofoil

are due to a coupling between the boundary layer and wake instabilities, where
there exists a single resonance frequency. The frequency of the vortex-street in
the wake is determined by the development of boundary-layer instability waves
on the pressure surface of the aerofoil. A frequency prediction may be obtained
by calculating the growth of spatially growing modes in the boundary layer. This
differs from the classical approach which presumes a wake controlled
phenomenon, predicting the frequencies by using a Strouhal number mechanism
based on the wake thickness (similar to predicting the frequencies in the wake of
a bluff body).
A simple model has been used, and some assumptions made which may be

plausibly no better than a rough ®rst approximation, yet the results do seem to
describe the observations surprisingly well.
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